Mathematical Statistics - Honours

Undergraduate | 2026

Course page banner
area/catalogue icon
Area/Catalogue
STAT 4014
Course ID icon
Course ID
204962
Level of study
Level of study
Undergraduate
Unit value icon
Unit value
6
Course level icon
Course level
4
Study abroad and student exchange icon
Inbound study abroad and exchange
Inbound study abroad and exchange
The fee you pay will depend on the number and type of courses you study.
No
University-wide elective icon
University-wide elective course
No
Single course enrollment
Single course enrolment
No
alt
Note:
Course data is interim and subject to change

Course overview

Statistical methods used in practice are based on a foundation of statistical theory. One branch of this theory uses the tools of probability to establish important distributional results that are used throughout statistics. Another major branch of statistical theory is statistical inference. It deals with issues such as how do we define a "good" estimator or hypothesis test, how do we recognise one and how do we construct one? This course is concerned with the fundamental theory of random variables and statistical inference.

Topics covered are: calculus of distributions, moments, moment generating functions; multivariate distributions, marginal and conditional distributions, conditional expectation and variance operators, change of variable, multivariate normal distribution, exact distributions arising in statistics; weak convergence, convergence in distribution, weak law of large numbers, central limit theorem; statistical inference, likelihood, score and information; estimation, minimum variance unbiased estimation, the Cramer-Rao lower bound, exponential families, sufficient statistics, the Rao-Blackwell theorem, efficiency, consistency, maximum likelihood estimators, large sample properties; tests of hypotheses, most powerful tests, the Neyman-Pearson lemma, likelihood ratio, score and Wald tests, large sample properties.

Course learning outcomes

  • Demonstrate knowledge of, and properties of, statistical models in common use
  • Understand the basic principles underlying statistical inference (estimation and hypothesis testing)
  • Be able to construct tests and estimators, and derive their properties,
  • Demonstrate knowledge of applicable large sample theory of estimators and tests.

Prerequisite(s)

N/A

Corequisite(s)

N/A

Antirequisite(s)

N/A