Course overview
Carbon Capture and Storage (CCS) is a critical technology in mitigating the effects of climate change, which involves capturing greenhouse gas emissions from heavy industries such as steel and cement, oil and gas, and mining, and storing them in underground geological formations. Students in this course will gain a comprehensive understanding of the principles and practices of carbon capture and storage in geological formations. Through a combination of lectures, tutorials, simulations, and group activities, students will develop the knowledge and skills required to engineer and design effective CCS systems. This course is a core requirement for the Bachelor of Engineering (Petroleum) (Honours) program and is also available as an elective for students in chemical, mining, civil and mechanical engineering. The course will cover key aspects of CCS including geological concepts, carbon capture technologies, geochemical reactions, site selection, and flow simulations. The course is delivered in intensive format, from 9 am to 5 pm over 7 days during the semester. The first 6 days of the course include a range of learning activities including lectures, tutorials, group projects, and simulations. Students will also work collaboratively in teams, building critical thinking and problem-solving skills that are essential for success in engineering and other STEM fields. The last day of the course (day 7), that is typically timetabled 4 weeks after day 6, will focus on regulatory framework, public engagement and techno-economic assessment of CCS projects. The group presentations are also due in day 7 of the course. Assessment in this course will include an essay and group presentation, tutorial submissions, and an end of semester exam. These assessments are designed to test the knowledge and skills acquired during the course, as well as to encourage students to engage in critical thinking and analysis.
Course learning outcomes
- Explain key aspects of carbon capture and storage (CCS) including engineering and geological concepts
- Explain the main carbon capture technologies including absorption, chemical-reaction, and adsorption (by solid porous materials) technologies
- Describe geochemical reactions, reaction time, geomechanics and fault reactivity during CO2 injection
- Analyse technical engineering aspects of CO2 geo-sequestration for site selection
- Simulate the flow of carbon dioxide in underground geological formations including depleted gas field and deep saline aquifers
- Apply a critical-thinking and problem-solving approach towards the principles of carbon capture and storage
- Demonstrate the ability to work cooperatively and flexibly as a member of a team, contributing to team leadership as the situation requires
Fee calculator
To display course fees, please select your status and program below:
We’re updating this Fee Calculator. It currently shows fees for programs only. Please check the relevant program for full fee details.
Study Abroad student tuition fees are available here.
Only some Postgraduate Coursework programs are available as Commonwealth Supported. Please check your program for specific fee information.
The Student Contribution amount displayed below is for students commencing a new program from 2021 onwards. If you are continuing in a program you commenced prior to 1 January 2021, or are commencing an Honours degree relating to an undergraduate degree you commenced prior to 1 January 2021, you may be charged a different Student Contribution amount from the amount displayed below. Please check the Student Contribution bands for continuing students here. If you are an international student, or a domestic student studying in a full fee paying place, and are continuing study that you commenced in 2025 or earlier, your fees will be available here before enrolments open for 2026.