Course overview
Introduction to air-breathing (gas turbines, ramjets, ducted rockets, scramjets) jet propulsion systems. Prediction of thrust, combustion reactions, specific fuel consumption and operating performance. Aerothermodynamics of inlets, combustors, nozzles, compressors, turbines. Review of space propulsion systems. Introduction to alternative future space propulsion systems. Chemical rocket and jet engine combustion including thermochemistry, chemical kinetics and the combustion chamber and instabilities. Jet engine noise and emissions. Overview of jet engine systems such as thrust reversal, internal air, starting and ignition, controls and instrumentation, power plant testing and installation, maintenance.
Course learning outcomes
- Explain propulsion systems (turbojets, turbofans, ramjets, ducted rockets, scramjets, chemical and electrical space propulsion (review) and non-traditional space propulsion systems) and their application to aerospace vehicles
- Demonstrate skills to analytically and numerically solve problems related to aerospace propulsion systems both on paper and using numerical methods
- Demonstrate skills in working independently with minimal supervision
- Demonstrate skills in critical evaluation of scientific literature
- Demonstrate skills in working as a team member
- andDemonstrate skills in planning and presentation of scientific talks and reports