Course overview
Frequency Domain Analysis; Amplitude Modulation; Synchronous Demodulation; Double Sideband Suppressed Carrier; Single Sideband Suppressed Carrier; Vestigial Sideband Modulation; Frequency Modulation; Radio and Television Broadcasting: Correlation Functions; Power Spectral Density; Cyclostationary Processes; Linear Time Invariant Systems; Gaussian Processes; White Noise; Noise Bandwidth; Narrowband Noise; Effect of Noise in Analog Systems; Information Theory and Source Coding; Information Content; Joint and Conditional Entropy; Source Coding Theorem; Huffman Codes; Mutual Information; Pulse Code Modulation; Differential Pulse Code Modulation; Pulse Position Modulation; Pulse Amplitude Modulation; Two Dimensional Signals; Carrier Modulation; Amplitude Shift Keying; Phase Shift Keying; Frequency Shift Keying; Quadrature Amplitude Modulation; The Matched Filter; Receiver for Carrier Systems; Probability of Error; Constellation Diagrams; Carrier and Clock Recovery; Digital Transmission in Bandlimited Channels; Orthogonal Frequency Division Multiplexing; Channel Capacity and Coding; Hamming Distance; Linear Block Codes; Hamming Codes; Review Optical Waveguides; Dispersion and Distortion Effects; Single-Mode and Multi-mode Optical Fibres; Light emitting diodes; Lasers; Photoelectric effects; PIN photodiodes; Avalanche Photodiodes; Receiver circuits; Noise and Detection.
Course learning outcomes
- Analyse communication systems in both the time and frequency domains
- Describe the principles of amplitude modulated and angle modulated communication systems and be able to analyse their performance in the presence of noise
- Explain source coding, its relations to information theory and cite Shannon's theorem
- Describe the principles of various digital modulation systems and their properties, including bandwidth, channel capacity, transmission over bandlimited channels, inter-symbol interference (ISI), demodulation methods, and error performance in the presence of noise
- Explain and analyse error correcting codes, including block codes
- Explain engineering fundamentals of photogeneration, photodetection, lightwave propagation, for optical communications