Analog Electronics

Undergraduate | 2026

Course page banner
Mode icon
Mode
Mode
Your studies will be on-campus, and may include some online delivery
On campus
area/catalogue icon
Area/Catalogue
ENGE 1005
Course ID icon
Course ID
206531
Campus icon
Campus
Adelaide City Campus
Level of study
Level of study
Undergraduate
Unit value icon
Unit value
6
Course owner
Course owner
Adelaide University
Course level icon
Course level
1
Study abroad and student exchange icon
Inbound study abroad and exchange
Inbound study abroad and exchange
The fee you pay will depend on the number and type of courses you study.
No
University-wide elective icon
University-wide elective course
No
Single course enrollment
Single course enrolment
No
alt
Note:
Course data is interim and subject to change

Course overview

This course develops a basic understanding of the fundamentals and principles of analog circuits and electronic devices in electrical and electronic engineering. This understanding is a critical step towards being able to design new electronic circuits or use them appropriately as part of a larger engineering system. Hence the course seeks to develop foundational concepts and skills, but does so through a series of application-oriented topics such as the design of DC power supplies, speed control of electric motors, and audio amplification and tone control. Learning opportunities include: online presentations with integrated practice exercises; tutorials in which small teams work together to explore, discuss, analyse and explain electronic circuits; and practicals in which theory is put to practical application. Important topics covered include: the key electrical variables and the application of fundamental circuit laws and theorems to DC and AC resistive circuits; power supply applications of diodes and switch-mode transistors; the operating principles of DC, induction and synchronous machines; analysis of simple operational and single-MOSET amplifiers; methods of systematic circuit analysis; and steady state sinusoidal analysis of RLC circuits. The course is designed to be one of the first undertaken by new students in electrical and electronic engineering such that successfully completing the course will provide the necessary foundation for more specialist learning in analog and radio frequency electronics and electrical power systems.

Course learning outcomes

  • Apply circuit laws, theorems and methods of systematic analysis to predict the steady state behaviour of simple linear DC and AC circuits
  • Use piecewise linear models to predict the steady state behaviour of simple diode and transistor circuits, AC and DC motors
  • Explain the transient behaviour of RLC circuits with reference to their differential equations
  • Simulate simple analog circuits to verify their behaviour
  • Explain the operation of circuits using transistors in switching mode to achieve a variable DC output
  • Demonstrate practical skills in the simulation, construction and testing of simple electrical and electronic circuits

Prerequisite(s)

N/A

Corequisite(s)

N/A

Antirequisite(s)

N/A