Introduction to Statistical Machine Learning (H)

Undergraduate | 2026

Course page banner
area/catalogue icon
Area/Catalogue
ARTI 3004
Course ID icon
Course ID
205292
Level of study
Level of study
Undergraduate
Unit value icon
Unit value
6
Course level icon
Course level
3
Study abroad and student exchange icon
Inbound study abroad and exchange
Inbound study abroad and exchange
The fee you pay will depend on the number and type of courses you study.
No
University-wide elective icon
University-wide elective course
No
Single course enrollment
Single course enrolment
No
alt
Note:
Course data is interim and subject to change

Course overview

Statistical Machine Learning is concerned with algorithms that automatically improve their performance through "learning". For example, computer programs that learn to detect humans in images/video; predict stock markets, and rank web pages. Statistical machine learning has emerged mainly from computer science and artificial intelligence, and has connections to a variety of related subjects including statistics, applied mathematics and pattern analysis. Applications include image and audio signal analysis, data mining, bioinformatics and exploratory data analysis in natural science and engineering. This is an introductory course on statistical machine learning which presents an overview of many fundamental concepts, popular techniques, and algorithms in statistical machine learning. It covers basic topics such as dimensionality reduction, linear classification and regression as well as more recent topics such as ensemble learning/boosting, support vector machines, kernel methods and manifold learning. This course will provide the students the basic ideas and intuition behind modern statistical machine learning methods. After studying this course, students will understand how, why, and when machine learning works on practical problems.

Prerequisite(s)

N/A

Corequisite(s)

N/A

Antirequisite(s)

N/A