Course overview
This course covers modern machine learning methods particularly useful for large and complex health data Content includes: Linear Regression and K -Nearest Neighbours; Classification (logistic regression, linear discriminant analysis); Resampling Methods (Cross-Validation, Bootstrap); Model Selection and Regularization (subset selection, shrinkage methods, dimension reduction methods); Beyond Linearity (fractional polynomials, basis functions, splines, generalized additive models); Tree-Based Methods (decision trees, bagging, random forests, boosting).
Course learning outcomes
- See Study Guides at: https://url.au.m.mimecastprotect.com/s/jyzMCmO5QMCjMl1XJtJi1URPVES?domain=bca.edu.au/
Degree list
The following degrees include this course