OL Mathematical Foundations of Data Science

Postgraduate | 2026

Course page banner
area/catalogue icon
Area/Catalogue
MATH 5022
Course ID icon
Course ID
204203
Level of study
Level of study
Postgraduate
Unit value icon
Unit value
6
Course level icon
Course level
5
Study abroad and student exchange icon
Inbound study abroad and exchange
Inbound study abroad and exchange
The fee you pay will depend on the number and type of courses you study.
No
University-wide elective icon
University-wide elective course
No
Single course enrollment
Single course enrolment
No
alt
Note:
Course data is interim and subject to change

Course overview

This course introduces fundamental mathematical concepts relevant to computer science and provides a basis for further postgraduate study in data science, statistical machine learning, and cybersecurity. Topics covered are probability: sets, counting, probability axioms, Bayes theorem; optimisation and calculus: differentiation, integration, functions of several variables, series approximations; linear algebra: vector and matrices, matrix algebra, vector spaces; discrete mathematics and statistics: linear regression, linear least squares, regularisation. Applications of the theory to data science and machine learning will be developed.

Prerequisite(s)

N/A

Corequisite(s)

N/A

Antirequisite(s)

N/A